If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x2) + 5x + 3 = 0 x2 + 5x + 3 = 0 Reorder the terms: 3 + 5x + x2 = 0 Solving 3 + 5x + x2 = 0 Solving for variable 'x'. Begin completing the square. Move the constant term to the right: Add '-3' to each side of the equation. 3 + 5x + -3 + x2 = 0 + -3 Reorder the terms: 3 + -3 + 5x + x2 = 0 + -3 Combine like terms: 3 + -3 = 0 0 + 5x + x2 = 0 + -3 5x + x2 = 0 + -3 Combine like terms: 0 + -3 = -3 5x + x2 = -3 The x term is 5x. Take half its coefficient (2.5). Square it (6.25) and add it to both sides. Add '6.25' to each side of the equation. 5x + 6.25 + x2 = -3 + 6.25 Reorder the terms: 6.25 + 5x + x2 = -3 + 6.25 Combine like terms: -3 + 6.25 = 3.25 6.25 + 5x + x2 = 3.25 Factor a perfect square on the left side: (x + 2.5)(x + 2.5) = 3.25 Calculate the square root of the right side: 1.802775638 Break this problem into two subproblems by setting (x + 2.5) equal to 1.802775638 and -1.802775638.Subproblem 1
x + 2.5 = 1.802775638 Simplifying x + 2.5 = 1.802775638 Reorder the terms: 2.5 + x = 1.802775638 Solving 2.5 + x = 1.802775638 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.5' to each side of the equation. 2.5 + -2.5 + x = 1.802775638 + -2.5 Combine like terms: 2.5 + -2.5 = 0.0 0.0 + x = 1.802775638 + -2.5 x = 1.802775638 + -2.5 Combine like terms: 1.802775638 + -2.5 = -0.697224362 x = -0.697224362 Simplifying x = -0.697224362Subproblem 2
x + 2.5 = -1.802775638 Simplifying x + 2.5 = -1.802775638 Reorder the terms: 2.5 + x = -1.802775638 Solving 2.5 + x = -1.802775638 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.5' to each side of the equation. 2.5 + -2.5 + x = -1.802775638 + -2.5 Combine like terms: 2.5 + -2.5 = 0.0 0.0 + x = -1.802775638 + -2.5 x = -1.802775638 + -2.5 Combine like terms: -1.802775638 + -2.5 = -4.302775638 x = -4.302775638 Simplifying x = -4.302775638Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.697224362, -4.302775638}
| 0=-8x+.5(2x+8) | | 16-ym^2=(4+2m)(4-2m) | | 11x+2=2(4x+1)-x+7 | | (m^2)-6m=247 | | 60x^4+120x^3+48x^2+24x=0 | | x(x+4)=11 | | -3(4p+5)-2(4-14p)=3(5+5p) | | -7x=10+(-2x) | | 11(t-2)+7t=6(3t+2)-11 | | 15x=4+38 | | 10x-4+4+x-22= | | 2x^2-2x+5=y | | -6x=-2x+4 | | 7x-2y=0 | | 2y^2-21y+27=0 | | 3(12+n)=5(n-4) | | 3(3x-1)+23=3x-4 | | 2x^3-30x^2+18x=0 | | y=-x^2+6x-5 | | 2x^3-30x+18=0 | | x^2+9x-15=0 | | x^12+6x^6*2x^4-6x+15= | | -131=5(3x-8)+6x | | 8-5[2-(7y-9)]= | | 7n-9=12 | | 3x^2+10x+14=0 | | -9=7-4d | | 16x-12=36 | | 6x^5+20x^4+x^3=0 | | x^2+15x-9=0 | | (-2)-(-5)= | | (-10)+(12)+(-18)= |